Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38472888

RESUMO

Globally, there is a serious problem with fruit and vegetable waste, which can result from improper food handling or storage techniques or from the disposal of inedible portions of produce [...].

2.
Foods ; 12(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37835340

RESUMO

This systematic review seeks to highlight, from the published literature about the extraction and application of lemon by-products rich in flavonoids, which works use environmentally friendly technologies and solvents and which ones propose a potentially functional food application, according to the Sustainable Development Goals (SDGs). WoS and SCOPUS were used as scientific databases for searching the documents, which were evaluated through 10 quality questions according to their adherence to our purpose (5 questions evaluating papers devoted to lemon flavonoid extraction and 5 concerning the application of such by-products in new foods). Each question was evaluated as "Yes", "No", or "does Not refer", according to its adherence to our aim. The analysis reported 39 manuscripts related to lemon flavonoid extraction; 89% of them used green technologies and solvents. On the other hand, 18 manuscripts were related to the incorporation of lemon by-products into new foods, of which 41% adhered to our purpose and only 35% evaluated the functionality of such incorporation. Conclusively, although the bibliography is extensive, there are still some gaps for further investigation concerning the extraction and application of lemon by-products to reduce food losses in an environmentally friendly way and the possible development of new functional foods, which must be performed following the SDGs.

3.
Sci Total Environ ; 892: 164779, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37308016

RESUMO

The consumption stage has been identified as the largest producer of food waste (FW) across the food supply chain (FSC), with fruit and vegetables being the most affected product category. The present study aims to determine the optimal storage scenario at household level to avoid food waste and which has the lowest environmental footprint. Broccoli was stored under different storage conditions: unbagged or bagged (periodically opened) in bioplastic bags inside a domestic refrigerator at 5 or 7 °C for 34 days and then analysed for relative humidity (RH), sensory properties and bioactive compounds. A life cycle assessment (LCA) was conducted to evaluate the environmental profile of 1 kg of broccoli purchased by the consumer (cradle-to-grave). At day 0 (base scenario) the carbon footprint was 0.81 kg CO2 eq/kg, with the vegetable farming being the main contributor to this environmental impact, mostly driven by fertiliser (production and its emissions to air and water) and irrigation (due to electricity consumption for water pumping). Quality and food waste depended on time and storage conditions: For short storage times, within three days, the best quality combined with the lowest environmental footprint was for unbagged broccoli at 7 °C and no household food waste. However, this scenario had the highest food waste level from day 3 onwards, with increased resource loss and overall environmental footprint. For long-term storage, using a bag and storing at 5 °C helped to reduce food waste with the lowest environmental footprint. For example, at 16 days, this scenario (bagged at 5 °C) could save 4.63 kg/FU of broccoli and 3.16 kg CO2 eq/FU compared to the worst scenario (unbagged at 7 °C). Consumers are the key to reducing household food waste and this research provides the knowledge for improvement.


Assuntos
Brassica , Eliminação de Resíduos , Dióxido de Carbono , Verduras , Pegada de Carbono
4.
Foods ; 12(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766089

RESUMO

Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.

5.
Foods ; 11(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36076782

RESUMO

The food industry is quite interested in the use of (techno)-functional bioactive compounds from byproducts to develop 'clean label' foods in a circular economy. The aim of this review is to evaluate the state of the knowledge and scientific evidence on the use of green extraction technologies (ultrasound-, microwave-, and enzymatic-assisted) of bioactive compounds from pomegranate peel byproducts, and their potential application via the supplementation/fortification of vegetal matrixes to improve their quality, functional properties, and safety. Most studies are mainly focused on ultrasound extraction, which has been widely developed compared to microwave or enzymatic extractions, which should be studied in depth, including their combinations. After extraction, pomegranate peel byproducts (in the form of powders, liquid extracts, and/or encapsulated, among others) have been incorporated into several food matrixes, as a good tool to preserve 'clean label' foods without altering their composition and improving their functional properties. Future studies must clearly evaluate the energy efficiency/consumption, the cost, and the environmental impact leading to the sustainable extraction of the key bio-compounds. Moreover, predictive models are needed to optimize the phytochemical extraction and to help in decision-making along the supply chain.

6.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009208

RESUMO

Ultrasounds (US) and LED illumination are being studied to optimize yield and quality. The objective was to evaluate the effect of a pre-sowing US treatment combined with a postharvest photoperiod including LEDs on rocket sprouts' quality and phytochemicals during shelf life. A US treatment (35 kHz; 30 min) applied to seeds and a postharvest photoperiod of 14 h fluorescent light (FL) + 10 h White (W), Blue (B), Red (R) LEDs or Darkness (D) were assayed. Antioxidants as phenolics and sulfur compounds (glucosinolates and isothiocyanates) were periodically monitored over 14 days at 5 °C. The US treatment increased the sulforaphane content by ~4-fold compared to CTRL seeds and sprouts. The phenolic acids and the flavonoid biosynthesis were enhanced by ~25%, ~30%, and ~55% under photoperiods with W, B, and R, respectively, compared to darkness. The total glucosinolate content was increased by >25% (W) and >45% (B and R) compared to darkness, which also reported increases of ~2.7-fold (W), ~3.6-fold (B), and ~8-fold (R) of the sulforaphane content as a main isothiocyanate. Postharvest lighting is an interesting tool to stimulate the secondary metabolism, while a US treatment was able to increase the sulforaphane content in seeds and sprouts, although no synergistic effect was reported.

7.
Foods ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159417

RESUMO

Background: According to social demands, the agri-food industry must elaborate convenient safe and healthy foods rich in phytochemicals while minimising processing inputs like energy consumption. Young plants in their first stages of development represent great potential. Objective: This review summarises the latest scientific findings concerning the use of UV and visible spectrum LED lighting as green, sustainable, and low-cost technologies to improve the quality of sprouts, microgreens, and baby leaves to enhance their health-promoting compounds, focusing on their mode of action while reducing costs and energy. Results: These technologies applied during growing and/or after harvesting were able to improve physiological and morphological development of sprouted seeds while increasing their bioactive compound content without compromising safety and other quality attributes. The novelty is to summarise the main findings published in a comprehensive review, including the mode of action, and remarking on the possibility of its postharvest application where the literature is still scarce. Conclusions: Illumination with UV and/or different regions of the visible spectrum during growing and shelf life are good abiotic elicitors of the production of phytochemicals in young plants, mainly through the activation of specific photoreceptors and ROS production. However, we still need to understand the mechanistic responses and their dependence on the illumination conditions.

8.
Foods ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828814

RESUMO

BACKGROUND: Phytochemical, bioactive and nutraceutical compounds are terms usually found in the scientific literature related to natural compounds found in plants linked to health-promoting properties. Fruit and vegetable beverages (mainly juice and smoothies) are a convenient strategy to enhance the consumption of horticultural commodities, with the possibility of being fortified with plant byproducts to enhance the content of bioactive compounds. OBJECTIVE: This review aims to analyse the different green technologies applied in beverage processing with a fortification effect on their health promoting compounds. RESULTS: Fortification can be performed by several strategies, including physical elicitors (e.g., processing technologies), plant/algae extract supplementation, and fermentation with probiotics, among others. Thermal processing technologies are conventionally used to ensure the preservation of food safety with a long shelf life, but this frequently reduces nutritional and sensory quality. However, green non-thermal technologies (e.g., UV, high-pressure processing, pulsed electric fields, ultrasounds, cold plasma, etc.) are being widely investigated in order to reduce costs and make possible more sustainable production processes without affecting the nutritional and sensory quality of beverages. CONCLUSIONS: Such green processing technologies may enhance the content of phytochemical compounds through improvement of their extraction/bioaccessibility and/or different biosynthetic reactions that occurred during processing.

9.
Plant Physiol Biochem ; 165: 274-285, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090151

RESUMO

The objective of the present study was to evaluate the periodical UV-B radiation hormesis during kale seeds germination in their main content of secondary metabolite compounds (phenols; glucosinolates; total antioxidant capacity -TAC-) and their changes during a refrigerated shelf-life. The total UV-B doses received were 0, 5, 10, and 15 kJ m-2 (CTRL, UVB5, UVB10, and UVB15) in where the 25% was applied on the 3rd, 5th, 7th, and 10th sprouting day. UV radiation did not affect the morphological development of the sprouts. UVB10 and UVB15 treatments increased their phenolic content (>30%). Likewise, TAC was increased by UV-B lighting ~10% (DPPH) and ~20% (FRAP). The hydroxycinnamic acid content in UVB15-treated sprouts increased by 52%, while UVB5 reported an increase of 34% in the kaempferol-3,7-di-O-glucoside concentration, compared to CTRL. After 10 d at 4 °C of shelf-life, content of gallic acid hexoside I and gallic acid increased by 55 and 78% compared to UV-untreated kale sprouts, respectively. Glucoraphanin was the main glucosinolate found in kale sprouts and seeds, followed by 4-hydroxy-glucobrassicin, whose biosynthesis was enhanced by UVB10 (~24 and ~27%) and UVB15 (~36 and ~30%), respectively, compared to CTRL. In conclusion, periodical low UV-B illumination represents a useful tool to stimulate phytochemicals biosynthesis in kale sprouts as an important source of bioactive compounds with potential health benefits.


Assuntos
Brassica , Antioxidantes , Suplementos Nutricionais , Glucosinolatos , Hormese , Raios Ultravioleta
10.
Food Sci Technol Int ; 27(8): 734-745, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33423548

RESUMO

The effect of revalorized Bimi leaves (B) and/or mustard (M) addition, as supplementary ingredients, to develop an innovative kale (K) pesto sauce was studied. Microbial, physicochemical (color, total soluble solids content -SSC-, pH and titratable acidity -TA-) and sensory quality were studied during 20 days at 5 °C. Bioactive compounds changes (total phenolics, total antioxidant capacity and glucoraphanin contents) were also monitored throughout storage. The high TA and pH changes in the last 6 days of storage were avoided in the K+B pesto when adding mustard, due to the antimicrobial properties of this brassica seed. SSC was increased when B + M were added to the K pesto, which positively masked the kale-typical bitterness. Mustard addition hardly change yellowness of the K pesto, being not detected in the sensory analyses, showing K+B+M pesto the lowest color differences after 20 days of shelf life. The addition of Bimi leaves to the K pesto enhanced its phenolic content while mustard addition did not negatively affect such total antioxidant compounds content. Finally, mustard addition effectively aimed to glucoraphanin conversion to its bioactive products. Conclusively, an innovative kale pesto supplemented with Bimi by-products was hereby developed, being its overall quality well preserved up to 20 days at 5 °C due to the mustard addition.


Assuntos
Antioxidantes , Mostardeira , Suplementos Nutricionais , Fenóis/análise , Folhas de Planta/química
11.
J Sci Food Agric ; 101(1): 44-53, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949155

RESUMO

BACKGROUND: The main objective of this study was to evaluate physiological and quality changes of minimally processed broccoli sprouts illuminated during postharvest storage under blue, red and far-red LED lighting as compared to darkness or illumination with fluorescent light, as control treatments. RESULTS: Morphological and microbiological changes were determined during 15 days at 5 °C. In addition, total antioxidant activity and bioactive compound changes throughout the shelf life were also monitored. Results showed that far-red LED lighting increased hypocotyl and sprout length, decreased microbial growth and improved the total antioxidant and scavenging activities, compared to darkness and fluorescent lighting treatments. However, it did not stimulate the biosynthesis of phenolic acids. In contrast, blue LED light reduced by 50% the total antioxidant capacity of broccoli sprouts compared to far-red treatment, as well as morphological development. In addition, total scavenging activity was increased under far-red LED light compared with the other treatments by 12-10% (darkness and fluorescence) and 33-31% (blue and red LEDs). CONCLUSIONS: Our results suggest that minimally processed sprouts may benefit from LED lighting during shelf life in terms of quality, although further experiments should be conducted to optimize a proper exposure cycle and intensity aiming for use in the distribution chain. The results also open the way for further development towards the integration of this technology in the food distribution chain.


Assuntos
Brassica/química , Brassica/efeitos da radiação , Antioxidantes/química , Antioxidantes/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Cor , Luz , Fenóis/química , Fenóis/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
12.
Sensors (Basel) ; 20(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230866

RESUMO

The control of the main environmental factors that influence the quality of perishable products is one of the main challenges of the food industry. Temperature is the main factor affecting quality, but other factors like relative humidity and gas concentrations (mainly C2H4, O2 and CO2) also play an important role in maintaining the postharvest quality of horticultural products. For this reason, monitoring such environmental factors is a key procedure to assure quality throughout shelf life and evaluate losses. Therefore, in order to estimate the quality losses that a perishable product can suffer during storage and transportation, a real-time monitoring system has been developed. This system can be used in all post-harvest steps thanks to its Wi-Fi wireless communication architecture. Several laboratory trials were conducted, using lettuce as a model, to determine quality-rating scales during shelf life under different storage temperature conditions. As a result, a multiple non-linear regression (MNLR) model is proposed relating the temperature and the maximum shelf life. This proposed model would allow to predict the days the commodities will reduce their theoretical shelf-life when an improper temperature during storage or in-transit occurs. The system, developed as a sensor-based tool, has been tested during several land transportation trips around Europe.


Assuntos
Monitoramento Ambiental , Conservação de Alimentos , Armazenamento de Alimentos , Europa (Continente) , Frutas , Umidade , Temperatura , Verduras
13.
J Sci Food Agric ; 98(5): 1863-1872, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28885683

RESUMO

BACKGROUND: The heating of a green smoothie during an innovative semi-continuous microwave treatment (MW; 9 kW for 15 s) was modelled. Thermal and dielectric properties of the samples were previously determined. Furthermore, the heating effect on the main chemopreventive compounds of the smoothie and during its subsequent storage up to 30 days at 5 or 15 °C were studied. Such results were compared to conventional pasteurisation (CP; 90 °C for 45 s) while unheated fresh blended samples were used as the control. RESULTS: A procedure was developed to predict the temperature distribution in samples inside the MW oven with the help of numerical tools. MW-treated samples showed the highest sulforaphane formation after 20 days, regardless of the storage temperature, while its content was two-fold reduced in CP samples. Storage of the smoothie at 5 °C is crucial for maximising the levels of the bioactive compound S-methyl cysteine sulfoxide. CONCLUSION: The proposed MW treatment can be used by the food industry to obtain an excellent homogeneous heating of a green smoothie product retaining high levels of bioactive compounds during subsequent retail/domestic storage up to 1 month at 5 °C. © 2017 Society of Chemical Industry.


Assuntos
Cisteína/análogos & derivados , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Sucos de Frutas e Vegetais/efeitos da radiação , Frutas/química , Glucosinolatos/química , Imidoésteres/química , Isotiocianatos/química , Verduras/química , Cor , Cisteína/química , Armazenamento de Alimentos , Temperatura Alta , Micro-Ondas , Oximas , Sulfóxidos
14.
J Sci Food Agric ; 98(6): 2411-2421, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29023761

RESUMO

BACKGROUND: Some algae are an excellent sources of vitamin B12, of special interest for vegetarian/vegan consumers, and of fucose to supplement fruit and vegetable beverages such as smoothies. Nevertheless, supplementation of smoothies with algae may lead to possible quality changes during smoothie shelf life that need to be studied. Therefore, the quality changes in fresh green smoothies supplemented (2.2%) with nine edible algae (sea lettuce, kombu, wakame, thongweed, dulse, Irish moss, nori, Spirulina and Chlorella) were studied throughout 24 days at 5 °C. RESULTS: The initial vitamin C content - 238.7-326.0 mg kg-1 fresh weight (FW) - of a 200 g portion of any of the smoothies ensured full coverage of its recommended daily intake, and still supplying 50-60% of the recommended intake after 7 days. Chlorella and Spirulina smoothies showed the highest vitamin B12 content (33.3 and 15.3 µg kg-1 FW, respectively), while brown algae showed fucose content of 141.1-571.3 mg kg-1 FW. These vitamin B12 and fucose contents were highly maintained during shelf life. CONCLUSION: The Spirulina supplementation of a 200 g smoothie portion ensured full coverage of the recommended vitamin B12 intake, with lower vitamin C degradation, during a shelf life of 17 days. Furthermore, thongweed and kombu are also considered as excellent fucose sources with similar shelf life. © 2017 Society of Chemical Industry.


Assuntos
Bebidas/análise , Aditivos Alimentares/análise , Fucose/análise , Vitamina B 12/análise , Chlorella/química , Cor , Armazenamento de Alimentos , Controle de Qualidade
15.
Food Sci Technol Int ; 24(2): 172-182, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29110539

RESUMO

The main nutritional/bioactive compounds (protein; aminoacids, AA; fucose; minerals; vitamins B12 and C; and total phenolic content, TPC) of nine commercial algae powders, used as food supplements, were studied. Undaria pinnatifida showed the highest protein/aminoacid contents (51.6/54.4 g 100 g-1). Among brown macroalgae, Himanthalia elongata showed the highest fucose content (26.3 g kg-1) followed by Laminaria ochroleuca (22.5 g kg-1). Mineral contents of 15-24% were observed in the algae, being particularly excellent sources of iodine (69.0-472.0 mg kg-1). Porphyra spp. and Palmaria palmata showed the highest vitamin B12 contents (667-674 µg kg-1). Vitamin C ranged among 490.4-711.8 mg kg-1. H. elongata showed the highest total phenolic content (14.0 g kg-1). In conclusion, the studied algae are excellent sources of protein, AA, minerals, vitamin C and some of them presented particularly high vitamin B12 and fucose contents, which may have a potential use as food supplements.


Assuntos
Clorófitas/química , Suplementos Nutricionais/análise , Microalgas/química , Phaeophyceae/química , Rodófitas/química , Alga Marinha/química , Aminoácidos/análise , Aquicultura , Ácido Ascórbico/análise , Oceano Atlântico , China , Clorófitas/crescimento & desenvolvimento , Carboidratos da Dieta/análise , Proteínas Alimentares/análise , França , Fucose/análise , Humanos , Iodo/análise , Microalgas/crescimento & desenvolvimento , Valor Nutritivo , Phaeophyceae/crescimento & desenvolvimento , Fenóis/análise , Rodófitas/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento , Espanha , Especificidade da Espécie , Vitamina B 12/análise
16.
Food Sci Technol Int ; 23(1): 46-60, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27352798

RESUMO

Smoothies represent an excellent and convenient alternative to promote the daily consumption of fruit and vegetables in order to obtain their health-promoting benefits. Accordingly, a green fresh vegetables smoothie (77.2% cucumber, 12% broccoli and 6% spinach) rich in health-promoting compounds was developed. Soluble solids content, pH and titratable acidity of the smoothie were 4.3 ± 0.4°Bx, 4.49 ± 0.01 and 0.22 ± 0.02 mg citric acid 100-1 g fw, respectively. Two thermal treatments to reduce microbial loads and preserve quality were assayed: T1 (3 min at 80 ℃) and T2 (45 s at 90 ℃). Fresh blended unheated samples were used as control (CTRL). The smoothie presented a viscoelastic behaviour. T1 and T2 treatments reduced initial microbial loads by 1.3-2.4 and 1.4-3.1 log units, respectively. Samples were stored in darkness at 5 and 15 ℃. Colour and physicochemical changes were reduced in thermal-treated samples throughout storage, which were better preserved at 5 ℃ rather than at 15 ℃. Vitamin C changes during storage were fitted with a Weibullian distribution. Total vitamin C losses of T1 and T2 samples during storage at 15 ℃ were greatly reduced when they were stored at 5 ℃. Initial total phenolic content (151.1 ± 4.04 mg kg-1 fw) was 44 and 36% increased after T1 and T2 treatments, respectively. The 3-p-coumaroyl quinic and chlorogenic acids accounted the 84.7 and 7.1% relative abundance, respectively. Total antioxidant capacity (234.2 ± 20.3 mg Trolox equivalent kg-1 fw) remained constant after the thermal treatments and was better maintained during storage in thermal-treated samples. Glucobrassicin accounted the 81% of the initial total glucosinolates content (117.8 ± 22.2 mg kg-1 fw) of the smoothie. No glucosinolates losses were observed after T2 treatment being better preserved in thermal-treated samples. Conclusively, a short time-high temperature mild thermal treatment (T2) showed better quality and bioactive compounds retention in a green fresh vegetable smoothie during low temperature storage.


Assuntos
Manipulação de Alimentos , Conservação de Alimentos , Compostos Fitoquímicos/análise , Verduras/química , Antioxidantes/análise , Ácido Ascórbico/análise , Bebidas/análise , Bebidas/microbiologia , Carotenoides/análise , Clorofila/análise , Temperatura Baixa , Cor , Fibras na Dieta/análise , Análise de Alimentos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Armazenamento de Alimentos , Frutas/química , Frutas/microbiologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Valor Nutritivo , Fenóis/análise , Reologia , Paladar , Verduras/microbiologia
17.
J Food Sci Technol ; 53(3): 1475-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27570272

RESUMO

Two fresh red vegetables smoothies based on tomato, carrots, pepper and broccoli and rich in health-promoting compounds were developed. The smoothies showed a viscoelastic behaviour. According to sensory analyses, a shelf life of 28 days at 5 °C for fresh blended smoothies was established while thermally-treated ones (3 min, 80 °C) reached up to 40 days at 20 °C and 58 days at 5 °C. For those mild heat treated smoothies, total vitamin C degradation was 2-fold reduced during storage at 5 °C compared to samples stored at 20 °C while the initial total carotenoids, lycopene and total chlorophylls contents were not greatly affected. A 250-g portion of such smoothies covers in a great extend the established recommended daily nutrient intakes for dietary fibre, minerals and vitamin C of different population groups. As main conclusion, a mild thermal treatment and low temperature storage greatly increased the shelf life of red fresh vegetables smoothies and reduced total vitamin C degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...